
User Manual

Yacht Devices NMEA 2000 Bridge YDNB-07
also covers models

YDNB-07N, YDNB-07R

Firmware version
1.03

2016

© 2016 Yacht Devices Ltd. Document YDNB07-002. October 28, 2016. Web: http://www.yachtd.com/

NMEA 2000® is a registered trademark of the National Marine Electronics Association. SeaTalk NG
is a registered trademark of Raymarine UK Limited. Garmin® is a registered trademark of Garmin Ltd.

Contents

Introduction 4

Warranty and Technical Support 6

I. Product Specification 7

II. Installation and Connection to NMEA 2000 Networks 9

III. LED Signals 11

IV. MicroSD Slot and Card’s Compatibility 12

V. Loading of Programs into the Device 14

VI. Structure and Basic Syntax of the Program 15

VII. Description of the Settings 17

VIII. Software Filters 20

IX. Optimization and Performance 29

X. Debugging of the Program 33

XI. Firmware Updates 35

Index 37

Appendix A. Troubleshooting 38

Appendix B. List of NMEA 2000 Messages of the Device 40

Appendix C. Device Connectors 41

Package Contents

Device 1 pc.
This Manual 1 pc.
Stickers for MicroSD slot sealing 6 pc.

— 4 —

Introduction

Yacht Devices NMEA Bridge unifies two physical NMEA 2000 networks into a single logical network,
smoothly exchanging messages between them. The Device also supports filtering and processing
of transmitted messages.

This can accomplish the following tasks:

1. Bypass the physical limits of NMEA 2000 networks concerning length of networks
(100 meters for regular cable and 250 meters for heavy or mid-type cable) and concerning
the maximum number (50) of physical devices attached to the network. On a network with
address capacity of 252, multiple bridges can be engaged to expand to around 250 physical devices.

2. Isolate devices from each other. Using the simple filter, you can block transmission of all
or of selected messages from a given device in a separate subnet.

3. Ensure proper functioning of equipment. Correct the transducer offset of the depth sounder,
or “delete” invalid data in messages from equipment that is only partially operational using
a 2- or 3-line script.

4. To ensure compatibility of equipment from different generations. You can create
and send any type of NMEA 2000 message using data from other messages in the network.

5. Diagnose malfunctions in the NMEA 2000 network. The Device can record network
messages and debug data from custom programs on a MicroSD card in a text file. You can view
the data in a standard text editor on a smartphone or tablet with a MicroSD slot, there is no need
for a computer. You can even create and edit programs for the Device right on your phone!

6. Safely connect devices that do not meet NMEA 2000 standards. One of the CAN-interfaces
on the device has high-voltage galvanic isolation and can operate at a higher supply voltage.

7. Create gateways for networks based on CAN protocol operating at a speed of 250 kbps.
The programming language of the device is not designed for full-fledged applications,
but one can create, for example, a gateway from a J1939 network to NMEA 2000.

— 5 —

Programming the device requires knowledge of NMEA 2000. Copy of NMEA 2000 standard can be
purchased from the National Marine Electronics Association: http://www.nmea.org.

Yacht Devices would like to note that a NMEA 2000 network might contain important
devices such as a deep sounder, magnetic compass and autopilot. Failure or incorrect
operation of these devices can result in serious accidents and fatalities. When
programming the Device, you must be fully aware of all the implications. Before
making a sea-going trial, conduct mandatory training for the vessel’s crew.

http://www.nmea.org

— 6 —

Warranty and Technical Support

1. The Device warranty is valid for two years from the date of purchase. If a Device was purchased
in a retail store, when applying under a warranty case, the sale receipt may be requested.

2. The Device warranty is terminated in case of violating the instructions of this Manual, case integrity
breach, repair or modification of the Device without manufacturer’s written permission.

3. If a warranty request is accepted, the defective Device must be sent to the manufacturer.

4. The warranty liabilities include repair and replacement of the goods and do not include the cost
of equipment installation and configuration, as well as shipping the defective Device
to the manufacturer.

5. Responsibility of the manufacturer in case of any damage as a consequence of the Device operation
or installation is limited to the Device cost.

6. The manufacturer is not responsible for any errors and inaccuracies in guides and instructions
of other companies.

7. The Device requires no maintenance. The Device’s case is non-dismountable.

8. If the event of a failure, please refer to Appendix A. before contacting the technical support.

9. The manufacturer accepts applications under the warranty and provides technical support only
via e-mail or from authorized dealers.

10. Contact details of the manufacturer and a list of the authorized dealers are published
on the website: http://www.yachtd.com/.

http://www.yachtd.com/

— 7 —

I. Product Specification

Figure 1. Drawing of YDNB-07R model of Bridge

Our devices are supplied with different types of NMEA 2000 connectors. Models with the suffix R
at the end of model name are equipped with NMEA 2000 connectors compatible with Raymarine SeaTalk
NG (as at the picture above). Models with the suffix N are equipped with NMEA 2000 Micro Male connectors
(see Appendix C).

— 8 —

Device parameter Value Unit

Operating voltage, from CAN1 interface 9..16 V

Average current consumption, CAN1 38 mA

Load equivalency number, CAN1 1 LEN

Supply voltage of CAN2 interface 9..30 V

Average current consumption at CAN2 13 mA

Load equivalency number, CAN2 1 LEN

Isolation between CAN1 and CAN2 2500 VRMS

Protection against reverse polarity Yes —

Operating temperature range -20..55 °С

Cable length 500 mm

Device’s case length (without connector) 54/40 mm

Weight without MicroSD card 52 g

— 9 —

II. Installation and Connection to NMEA 2000 Networks

Never connect both connectors of the Device to the same NMEA 2000 network.
This can flood the network with infinite forwarding of messages and cause a temporary
inoperability of the network.

The Device requires no maintenance. When deciding where to install the Device, choose a dry mounting
location. Avoid places where the Device can be flooded with water; this can damage it.

The Device is directly connected to the network backbone without a drop cable. Before connecting
the Device, turn off the bus power supply. Refer to the manufacturer’s documentation if you have
any questions regarding the use of connectors:

• SeaTalk NG Reference Manual (81300-1) for Raymarine networks

• Technical Reference for Garmin NMEA 2000 Products (190-00891-00) for Garmin networks

After connecting the Device, close the lock on the connection to ensure water resistance and reliability.

The microcontroller of the Device is powered by the CAN1 interface. The Device will
not work until the NMEA 2000 network on the CAN1 interface is not powered up. If you want
to start up the Device for familiarization purposes, the CAN2 interface can be left unconnected
from the NMEA 2000 network.

The Device has a LED which flashes red or green. After turning the power in the NMEA 2000 network on,
the Device’s LED will give a series of 2 flashes 5 seconds apart. If this does not happen, see Appendix A.

— 10 —

Figure 2. Scheme of a typical installation

Please remember that a NMEA 2000 network requires a separate power supply and a terminator
on each side. If the Device is inset, dividing an existing NMEA 2000 network into two parts, you have to add
a terminator to each of the segments and power the second segment with a 12V power supply.
More information on this topic is available in the above listed documents from Raymarine and Garmin.

— 11 —

III. LED Signals

1. Signal with period of 5 seconds, two flashes of the LED. The first flash indicates the condition
of the CAN1 interface network. The signal is green if within the last period (5 seconds) has been data
received from the network or successfully sent, red if not. The second flash indicates
the condition of the CAN2 interface network.

The Device can be configured to receive only a limited set of NMEA 2000 messages
(see SectionVII.3), the remaining messages are filtered at the hardware level. In this regard,
some NMEA 2000 networks can indicate a red light much of the time, even when
the network is functioning normally. In this case, to check the connection, turn one device that
is on the network (e.g. the chart plotter) off and on again. The status of the network will be displayed
with green flashes for some time as the device is powering up and connecting.

2. Three flashes (colors may vary), one time after inserting the MicroSD card into
the Device. See Section V.

3. Long flash (3-second), red or green. Diagnostics mode started / finished, see Section X.

4. Five green flashes when NMEA 2000 network is turned on. The Device has the MicroSD
inserted with a firmware update, the firmware is updated (see Section XI).

— 12 —

IV. MicroSD Slot and Card’s Compatibility

The Device has a slot for a MicroSD card that allows you to configure the device (see Section V) and update
the firmware (see Section XI).

Figure 1. Device with MicroSD card (pin side visible at left, label side at right)

The Device slot has a ‘push-push’ mechanism that works on a spring and ensures proper
card fixation. Improper loading or unloading (withdrawing your finger too quickly or
not waiting for the click) can result in the card being propelled out of the Device up to 5 meters.
To avoid possible eye injury, loss of or damage to the card, and other hazards, insert
and remove the card with caution.

— 13 —

Since the MicroSD slot is usually not in use when the Device is working, we recommend sealing it with
the sticker that is included with the Device or with a piece of tape to prevent water from entering the Device
through the slot.

The Device supports MicroSD memory cards of all capacities and classes. The MicroSD card
must be formatted on a personal computer before use in the Device. The Device supports the following file systems:
FAT (FAT12, FAT16, MS-DOS) and FAT32. It does not support exFAT, NTFS, or any other file systems.

Be careful when inserting the MicroSD into the Device. The card is inserted with the label side toward
the LED and with the pin side toward the cable.

— 14 —

V. Loading of Programs into the Device

Place YDNB.CFG file with the program to the root directory of a MicroSD card with a FAT or FAT32
file system. Insert the MicroSD card into the Device. After a few seconds, you should see the LED flash
three times:

1. Three red flashes mean that the memory card cannot be read.

2. A green followed by two red flashes means that the YDNB.CFG file cannot be found
on the memory card and the current Device configuration was saved to the YDNBSAVE.CFG file.

3. A red followed by a green and another red flash means, that the YDNB.CFG file contains
errors and was not accepted by the Device. The text file YDNBERR.TXT was created in the root
directory of the memory card, comprising an error log.

4. Three green flashes mean that the file has successfully been loaded into the Device. The text
file YDNBSAVE.CFG was created in the root directory of the memory card, comprising the current
program and the used settings.

The Device performs compilation of the program text into bytecode. Before the Device saves a program
in the YDNBSAVE.CFG file, it decompiles the bytecode to text. This is why the contents of the YDNB.CFG
and YDNBSAVE.CFG files can differ from each other.

The YDNB.CFG file must contain at least one interpretable line of code (a setting, filter etc.) without errors,
to be loaded into the Device.

To modify the current program, insert a memory card into the Device that does not contain a YDNB.CFG
file. The LED of the Device will flash green, red, red. This means that a YDNBSAVE.CFG file, comprising
the current program, was saved onto the memory card. This program can be modified, saved as YDNB.CFG,
and loaded back into the Device.

— 15 —

VI. Structure and Basic Syntax of the Program

The program defines algorithms and rules for the processing and forwarding of NMEA 2000 messages that
the Device receives via the CAN1 and CAN2 interfaces.

The program consists of settings, subprograms of filters, and comments. The settings and filters
are described in detail in the later sections of this Manual.

Comments in the program are added after the # symbol. Comments can be situated at the beginning
of a line as well as after interpretable program text.

Settings can be set anywhere in the program, except for inside subprograms of filters. Nevertheless,
we recommend declaring settings before filters.

Example 1.

Example N1

FW_CAN1_TO_CAN2=ON # Allow forwarding of all mismatched messages
FW_CAN2_TO_CAN1=OFF # Setting for other direction

match(CAN2,0x01FD0600,0x01FFFF00) # 1st filter
{
 # Empty subprogram, matched messages will be dropped
}

match(CAN2,0x00000010,0x000000FF) # 2st filter
{
 send(CAN1) # Forward of matched message to CAN1 interface
}

match(CAN1,0x00000020,0x000000FF) # 3nd filter (for CAN1)
{
 # No send(), matched messages will be dropped
}
End of program

— 16 —

A filter consists of a header, which begins with the keyword match(), and contains the data for the matching
of a message, as well as a processing subprogram entered in the specially created programming language.

The order of the filters is important because the Device matches received messages with the filters,
in the order they are specified in the program. In case of a match, the message is sent to the processing
subprogram of the filter, which will then be responsible for forwarding or blocking the message. The message
will not be compared with the next filter.

In case there is no match with any of the filters, the Device follows the settings. If message forwarding
is enabled for the interface (by default, yes), the given message will be sent to the other CAN interface.
If disabled, the message will be discarded.

The program in example 1 comprises two settings and three filters. The Device will forward every message
it gets from the CAN1 interface to the CAN2 interface, except for messages sent by the device with address
0x20. But only messages with the address 0x10 will be forwarded from the CAN2 to the CAN1 interface,
with the exception of messages with PGN 0x1FD06.

Looking ahead, we explain the operation of this program. When receiving a message from
the CAN2 interface, it coincides with the first filter of the program when its PGN is equal to 0x1FD06.
The processing subprogram of the first filter is empty, so the message will not be forwarded and
the processing of the message is completed.

In case there is no match with the first filter, comparison with the second filter will be executed. It is successful
if a device with the address 0x10 at the CAN2 network sent the message. The processing subprogram
of this filter consists of only a call of the send() function, which initiates the forwarding of the message.

If the messages received from the CAN2 interface do not coincide with the first two filters (the third
filter only affects messages received from the CAN1 interface), the messages will be blocked according
to the FW_CAN2_TO_CAN1 setting.

— 17 —

VII. Description of the Settings

Note that a vertical bar (pipe) is used in the descriptions below to separate alternative setting values.
ON|OFF means, that the setting can have to different values — ON or OFF.

1. Forwarding of messages

 FW_CAN1_TO_CAN2=ON|OFF
 FW_CAN2_TO_CAN1=ON|OFF

Enables or disables the automatic forwarding of messages that do not coincide with filters between the CAN1
and CAN2 interfaces, see example 1 at page 15.

2. Assembly of NMEA 2000 fast messages

 PGNS_TO_ASSEMBLY=x

x — from one to five PGN, entered as decimal or hexadecimal values, separated by commas.

NMEA 2000 messages with a length from 9 to 223 byte, are transmitted in a series of standard CAN messages
with a length from 1 to 8 byte (see „3.1 Fast-packet messages“ in the NMEA 2000 standard documentation).

The Device can pre-assemble NMEA 2000 fast messages from series of CAN messages and transmit them
to the program in an assembled state. In this parameter, you can select up to five messages types
for assembly, using PGN. Messages not completely assembled will be discarded.

When such a message is send, it is dissembled into a series of CAN messages and put into a sending queue.
It is recommended not to use the assembly of NMEA 2000 messages when possible, but to process them
at the level of CAN messages, as this will significantly reduce the sending delay in the Device (see Section IX).

— 18 —

3. Hardware filters

 CAN1_HARDWARE_FILTER_y=f,m
 CAN2_HARDWARE_FILTER_y=f,m

y — number of the hardware filter, decimal number from 1 to 7;
f — filter value, decimal or hexadecimal number (29 significant bits);
m — filter mask, decimal or hexadecimal number (29 significant bits).

The Device can filter messages from the CAN1 and CAN2 interface at hardware level, which in some cases
can reduce the load on the microprocessor by a factor of up to a 100. The message selection is carried
out through the standard 29-bit identifier of CAN messages, which contain the message priority, PGN,
the sender’s address and (in some cases) the recipient’s address.

Messages are only passed to the program if they match one of the hardware filters. It is possible
to set up to 7 custom hardware filters for each interface, with numbers from 1 to 7.

Additionally, the Device has a set system hardware filter for each interface with the number 0,
which cannot be modified by the user:

 CAN1_HARDWARE_FILTER_0=0x00E80000, 0x01F90000
 CAN2_HARDWARE_FILTER_0=0x00E80000, 0x01F90000

The filter (first parameter) sets bits for the comparison with the message identifier and
the mask (second parameter) indicates the bits whose comparison result is significant.

Thus, the system hardware filter passes only messages with the following PGNs:
0xE800 (ISO Acknowledgement), 0xEA00 (ISO Request), 0xEC00 (ISO Transport protocol),
0xEE00 (ISO Address Claim).

If no custom hardware filter for the interface is defined in the program, a filter that accept all messages
will be automatically added for the given interface:

 CAN1_HARDWARE_FILTER_1=0,0

So if no custom hardware filter is set in the program, all messages will be passed to the program.

— 19 —

4. NMEA 2000 instance

DEVICE_INSTANCE=x
SYSTEM_INSTANCE=y

x — number from 0 to 255, y - number from 0 to 15.

These settings allow you to program the device and system instances of the Device, used in
the Device information (NAME) and transmitted in the ISO Address Claim message.

The default value of both settings is 0. These settings will not be saved to the YDNBSAVE.CFG file if they
have the default values.

5. Message slots initialization

 SLOTx=aabbccdd…
 or
 SLOTx=aa bb cc dd….

x — number of slot, 1 – 3
aabbccdd — sequence of bytes (1 – 229), hexadecimal values

These settings are used to initialize slots when the Device is powered up (or when a new program is
loaded from the MicroSD card). Data from slots may be loaded to the current message buffer using the
load() function (see VIII.8). The buffer’s format is described in VIII.2. You can overwrite slot content
in the program filters.

Example of non-addressed ISO Request of ISO Address Claim:

 SLOT1= 00FFEA18 FF 03 00EE00

— 20 —

VIII. Software Filters

To write processing programs for messages, we created a special programming language similar to many
other modern languages, but with a number of limitations imposed by tasks and computing capabilities
of the microcontroller.

As you may have noticed in Example 1, the interpreted lines of the program contain no special symbols
that indicate the end of a line (in C++, Java, and JavaScript such symbols are semi-colons). Each new
interpreted expression must start on a new line.

All numbers used in the program are integer values, specified as decimal or hexadecimal numbers. The case
of hexadecimal numbers is not important, but the 0x prefix must be indicated in lower case.

Numeric values may also be shown in 7-bit ASCII, a symbol must be enclosed in single quotes: ‘a’, ‘1’, etc.

Preset constants used in the program (DATA), interface identifiers (CAN1, CAN2), data type identifiers
(UINT32, FLOAT, etc.), all are case sensitive and must be indicated in upper case.

The programming language does not support creation of user functions, but does allow use
of built-in functions (get(), set(), cast(), send() and others).

1. Defining filters

A filter is defined by the keyword match() with 3 parameters in parentheses, after which its subprogram
follows in curly brackets (which may be empty):

match(interface_id, filter, mask)
{
}

interface_id — the interface identifier: CAN1, CAN2 or ANY;
filter and mask — the numeric values of the filter and mask.

The Device compares the filter parameters with the interface from which the message is received,
and compares the 29-bit identifier of the CAN message (which contains the priority of the message, the PGN,

— 21 —

sender address, and [in some messages] the address of the recipient) with the filter and mask. The filter
(the second parameter) assigns bits for comparison with the message identifier, and a mask (the third
parameter) indicates bits whose comparison result is significant.

So, the filter:

match(CAN1,0x00E80000, 0x01F90000)

matches only messages received from the CAN1 interface and which have the following PGN:
0xE800 (ISO Acknowledgement), 0xEA00 (ISO Request), 0xEC00 (ISO Transport protocol),
0xEE00 (ISO Address Claim).

The keyword match() is not translated into bytecode, so the comparison of the specified filters with
the messages received is very quick.

The program may contain up to 20 filters.

2. Message buffer

The subprogram has access to the message and its 29-bit CAN identifier that is stored in the buffer described
in Table 1.

Table 1. Message buffer structure

Offset Length
in bytes Description

0 4 29-bit identifier CAN message (LSB)

4 1
0xff – indicator of a single-frame NMEA 2000 message (CAN message with
29-bit identifier); 0xfe - indicator of a CAN message with an 11-bit identifier;
0x00..0xE0 in steps of 0x20 – indicator of the NMEA 2000 fast message
(sequence counter); other values are reserved

5 1 Message length (3..223)

6 223 Message data

— 22 —

By modifying the values in the buffer, the subprogram can modify messages and even create new messages.
Regardless of the actual length of the received message, the subprogram has access to all 229 bytes
of the buffer.

Please note that if a NMEA 2000 fast message’s PGN is not included in the PGNS_TO_ASSEMBLY list,
the program will be called for each CAN message in the sequence, and the byte at offset 4 will be set to 0xff.

3. Sending a message

To send message stored in the buffer a built-in send() function is used:

send(interface_id)

interface_id — interface through which the message is sent, CAN1 or CAN2. This parameter can be
omitted, in this case the message will be sent through the interface opposed to the one from which
the processed message was received.

In order to avoid embarrassing mistakes with unpredictable consequences, we recommend always to use
the send() without a parameter, wherever possible.

Note that the filter subprogram is responsible for forwarding the message being processed. If your
subprogram does not contain a call to send(), then the processed message will not be forwarded.

4. Variables, operators, and expressions

There are 26 global variables available to the programmer, with names from A to Z. The case of the name
of the variables is not important. Variables can be one of the following types that are defined implicitly
and automatically converted to the necessary type when operations are preformed.

• INT8 — signed 1-byte integer;

• UINT8 — unsigned 1-byte integer;

• INT16 — signed 2-byte integer;

• UINT16 — unsigned 2-byte integer;

• INT32 — signed 4-byte integer;

— 23 —

• UINT32 — unsigned 4-byte integer;

• FLOAT — 4-byte number with floating point.

When you turn on the Device, all variables are initialized to 0 type INT32. You can use this fact
for the initialization of variables.

The following arithmetic, logical and shift operations are allowed (listed in order of priority):

• * (multiplication), / (division), % (the remainder of integer division)

• + (addition), - (subtraction), << (binary shift to the left), >> (binary shift to the right), | (logical OR),
^ (XOR), & (logical AND)

• = (assignment)

Parentheses are used to increase the priority of the operation:

A = (3 + 5) * 2 # Equivalent A = 16

When you assign values to variables, the result type is automatically selected:

A = 1 # INT32
B = 2.0 # FLOAT
C = '1' # 0x31, UINT8
D = B * C # 0x31 * 2.0 = 49 * 2.0 = 98.0, FLOAT
E = 0xFF00AA3F # UINT32

Use the built-in cast() function to set an expression to a specified type:

[type] cast(expression,type)

Where type is one of the types listed above. For example:

B = cast(1.5, INT8) # 1, INT8
C = cast(B << 2, FLOAT) # 4.0, FLOAT

Note that the compiler does not optimize algorithms, try to perform calculations efficiently.

— 24 —

5. Modification of the message buffer

To modify a message in the buffer and read data from it, there are, respectively, two built-in functions set()
and get():

set(expression1,type,expression2)
[type] get(expression1, type)

expression1 — expression converted to UINT8 type, offset of the first byte of data in the buffer;
type — the data type identifier (see VIII.4);
expression2 — an expression, the result of which is will be casted to the specified type and placed in
a buffer with the offset that is specified in expression1.

Addressing of the data in the buffer starts at zero. For more convenient access to the data,
we recommend using the built-in constant DATA, which is equal to the offset in the buffer of the first byte
of the message’s data.

Example 2.

match(CAN1,0x1F50B00,0x1FFFF00)
{
 A = get(DATA+1, UINT32) # get 4-byte integer from message
 set(DATA+1, UINT32,A + 20) # set the corrected value
 send() # send message to CAN2
}

In Example 2, a filter for Water Depth messages (PGN 0x1F50B) is implemented. The subprogram retrieves
the value of the depth (four-byte integer value, bytes 1-4 of the message’s data), and returns it, adding 20.
After that, the message is sent. The result of the program is to increase the sonar readings by 20 centimeters.

6. Comparison operator if()

The comparison operator if is the only operator in the language that supports comparisons: > (more than),
< (less than), == (equal), != (not equal), <= (less than or equal), >= (more than or equal). The else block
is optional:

— 25 —

if (expression1 operator expression2) {
}
else {
}

The above Example 2 does not take into account that the transmitted sonar depth can be set to
0xFFFFFFFF, which means "no data." Using the operator if() we can check the data for the admissibility
of a range of values:

Example 3.

match(CAN1,0x1F50B00,0x1ffff00)
{
 a = get(DATA+1, UINT32) # get 4-byte integer from message
 if (A < 0xFFFFFFFF-20) # is the value valid?
 {
 set(DATA+1, UINT32,A + 20) # set the corrected value
 }
 send() # send message to CAN2
}

7. Real time functions

The majority of data in a NMEA 2000 network has a limited life span. If you want to store data in global
variables to be used in filters of other messages, you need to determine their relevance to have the filters
work correctly.

UINT32 timer()
UINT32 timediff(expression)

— 26 —

The timer() function returns the number of milliseconds since the Device was turned on. The value
of the timer overflows and is reset approximately every 49 days. To calculate the difference (in milliseconds)
between the current timer value and the stored value of the timer, it is convenient to use the built-in
timediff() function, which handles timer overflows and guarantees the return of the correct value
if the difference between the current timer value and the value transferred is less than 49 days.
See also: heartbeat(), VIII.11.

8. Storage buffers

save(slot)
load(slot)

The save(slot) function stores data from the message buffer in one of the three additional buffers,
and the function load(slot) overwrites the current message buffer with the data from specified slot. The
slot identifier can have one of three values: SLOT1, SLOT2, SLOT3. You may set slot contents in settings
(see VII.5).

9. Getting the Bridge address

UINT8 addr()

This function returns the address of a NMEA 2000 device. The address of the device is the same on both
the CAN1 and CAN2 interfaces.

In some cases, the normal operation of the network can be broken when a message with the address
of a different device is sent. In this case, you can send the message using the Bridge address. This
contradicts NMEA 2000 standards, as the PGN of your message is not declared in the list
of messages transferred by the Bridge, and in rare cases, the message may be ignored by some devices,
but it does not affect operation of other devices.

— 27 —

Example 4.

Processing of Actual Pressure messages (PGN 0x1FD0A) and generation of the
Environmental Parameters messages (PGN 0x1FD06

match(CAN2,0x1FD0A00,0x1ffff00)
{
 send() # Forward the original message
 A = get(DATA + 2, UINT8) # Extract the data type
 if (A == 0) # Is it atmospheric pressure?
 {
 B = get(DATA + 3, INT32) # Extract the pressure value
 if (B != 0x7FFFFFFF) # Check the validity of the value
 {
 set(1, UINT8,6) # Change PGN from 0x1FD0A to 0x1FD06
 set(DATA + 1, UINT32, 0xFFFFFFFF) # Set the unused fields
 set(DATA + 5, UINT16, B / 1000) # Convert and set pressure
 send(CAN1) # Send Environmental Parameters to CAN1
 set(0, UINT8, addr()) # Replace the address with the address
 # of the Bridge
 send(CAN2) # Send Environmental Parameters to CAN2
 }
 }
}

In the above example, the program sends out a message from CAN2 to CAN1 for Actual Pressure
(PGN 0x1FD0A). For compatibility with older hardware, the program also prepares an Environmental
Parameters message (PGN 0x1FD06) and sends it to CAN1 with the original address, and to CAN2
(where the original sender is located) it sends the same message, but using the address of the Bridge
as the sender in that subnet.

— 28 —

10. Program initialization

Like filters, the initialization section is defined by the keyword init() without parameters, after which
its subprogram follows in curly brackets:

init()
{
}

init() can be used to initialize program variables; it is guaranteed to be called when the Device is turned
on, before any other user code. Note, the program inside init() can't send network messages because
the NMEA 2000 standard prohibits sending of any messages during the first 250 milliseconds after
the device's address claim procedure, and any send() calls from user code will be ignored.

11. Heartbeat

Like filters or init(), heartbeat is defined by the keyword heartbeat(ms) with one numeric decimal
parameter which specifies the periodic interval in milliseconds, after which its subprogram follows in curly
brackets:

heartbeat(1000)
{ # This code will be executed every second
}

heartbeat() can be used when a code must be executed periodically. The heartbeat() is first called
from the user's program immediately after init().

— 29 —

IX. Optimization and Performance

The transfer time of single-frame NMEA 2000 messages is about 520 microseconds. The Device
does not waste computing resources to receive and transmit messages; these operations are performed
by the hardware.

The time from receipt of a message to the time that it is sent, including the execution of the program
consisting of 20 filters, for messages that do not match any of the filters is 100 microseconds. Thus, message
transfer between the two interfaces is possible in real time with a minimal delay.

Of the 100 total microseconds, only 40 microseconds are used for the comparison with filters
(program execution). The rest of the time is spent processing interruptions from the CAN controller, placing
the received message into the input queue, removing it from the queue for the program, and then handing
it over to the CAN controller to send.

The runtime (for messages matching a filter) of Example 2 is 240 microseconds, and
of Example 7 — 515 microseconds. The total delays in the Device are 300 and 575 microseconds respectively.

NMEA 2000 messages have a period of 100 milliseconds or more, loading of the NMEA 2000 network
is usually 10-30%. So it is difficult to imagine conditions under which a delay of 0.5 milliseconds
for one message may cause a significant queue.

None the less, the Device does have a software queue for 100 inbound and 100 outbound messages,
with a maximum lifetime of messages in the queue of 50 milliseconds.

The device’s performance is sufficient for practical applications, even in highly loaded networks.
As long as egregious programming errors are avoided, no overload issues should occur.

1. Using hardware filters

The most common scenario for using the Device is where there are one or two devices on one interface
(e.g. CAN2) whose messages need to be processed through some filters. At the same time, all the other
devices are on a different interface (CAN1). In a such case, the program shown in Example 5 below
is extremely effective.

— 30 —

Example 5.

FW_CAN1_TO_CAN2=ON
FW_CAN2_TO_CAN1=ON
CAN1_HARDWARE_FILTER_1=0x00000000, 0x00FFFFFF

match(CAN2,0x1FD0A00,0x1ffff00)
{
 # some required processing here...
}

Thanks to the system hardware filters (see VII.3), messages which are required for the normal function
of the NMEA 2000 network (ISO Acknowledgement, ISO Request, ISO Address Claim) will be transmitted
through the hardware filter to both interfaces.

Because there is no custom hardware filter for the CAN2 interface in the program, the Device will add
a hardware filter that allows all messages from this interface (see VII.3) to be passed to the program.
The filter CAN1_HARDWARE_FILTER_1 will not allow any additional messages; we added it only to ensure
that the Device would not add a filter to the CAN1 interface that allows all messages through.

So the Device will not waste computational resources on processing and send “unneeded” messages from
the CAN1 network to the CAN2 network. In a typical network such messages can comprise over 99%
of the total.

2. match() instead of if()

There is the temptation to use the if() operator to process messages with different PGNs inside
a single filter.

The comparison of the 29-bit identifier of received message and the filters is not performed from bytecode,
and is executed several times faster than would be possible in the subprogram. Increasing the number
of filters has practically no effect on the time needed to compare identifier with the filters
(see Example 6at the next page).

— 31 —

Incorrect Example 6.

match(CAN1,0x00000010,0x000000FF) # sent from 0x10 address?
{
 p = (get(0,UINT32) >> 8) & 0x1ffff # get the PGN
 if (p == 0x1FD0A) # is it “Actual Pressure” message?
 {
 }
}

3. Optimization instead of a compiler

In this version of the compiler there are no optimization algorithms, and the bytecode for the following
expressions will contain multiplication and division operations:

A = (6/3)*5

The compiler will create code to calculate B*C+D/5 two times for the following program:

A = B*C+D/5
F = B*C+D/5 + 1

If you have a lot of calculations in your program, try to optimize them.

Future updates of the software will place special focus on issues of optimization during compilation
to bytecode.

4. Do not use fast messages assembly

In most cases, the data in the message can be modified without pre-assembly. Consider, for example, hacking
the log distance (a criminal offense in most countries) using the Distance Log message (PGN 0x1F513).

— 32 —

Example 7.

PGNS_TO_ASSEMBLY=0x1F513
match(CAN1,0x1F51300,0x1FFFF00)
{
 set(DATA+6, UINT32, get(DATA+6,UINT32) — 1852000) # 1000 nm of
 send()
}

Example 8.

match(CAN1, 0x1F51300,0x1FFFF00)
{
 if (get(DATA,UINT8) & 0x1F == 1) # 2nd message is sequence?
 {
 set(DATA+1, UINT32, get(DATA+1,UINT32) – 1852000) # 1000 nm off
 }
 send()
}

The result of the code is the same in both examples. In the second example, the subprogram
will be performed three times, as the NMEA message with PGN 0x1F513 is sent in three CAN messages.
The code execution time in the second example is longer, as it has additional operations.

But in the case of Example 7, the Device will receive all three CAN messages first and only then transmit
the assembled NMEA message to the program. The time between receiving the first and third messages
will be over 1000 microseconds, the period in which two messages on the CAN network must be
transmitted. When you call the send(), the NMEA 2000 message will be divided into three CAN messages
and go to the send queue. The third message will, at the earliest, be sent in 1000 microseconds.

In this way, in Example 7, all messages will be sent approximately 1000 microseconds earlier than
in Example 8. In practice, the difference of 1 millisecond may not seem significant, but the longer
the NMEA 2000 message, the longer will be the gap. Furthermore, if there is high load on the either
of the CAN networks, the program shown in Example 7 has an additional advantage.

— 33 —

X. Debugging of the Program

The debug mode is not a normal operation mode of the Device. The recording of
debugging data can lead to additional message delay and the loss of NMEA 2000 messages.

To activate the debug mode, add the following setting to the program file:

DIAGNOSTICS=x

Where x is the duration in seconds for which the debug mode is active.

Note that this setting is not saved to the Device volatile memory and is only active until either the MicroSD
card is removed or the Device is turned off.

After three LED signals that indicate the processing of the YDNB.CFG file, the LED will glow green
for 3 seconds. This signal means that the debug mode is activated.

The log file YDNBLOG.TXT will be created (overwritten) on the memory card. It will contain all NMEA
messages matched with filters; and all messages which are sent by the send() function from filter
subprograms. Besides that, you can use the built-in this function:

log(expression)

which save the expression result or value of variable into the log file.

Do not remove the memory card from the Device while the debug mode is active!

After the specified duration, the Device’s LED will glow red for 3 seconds. This means that the debug mode
is deactivated and the log file is closed. Now you can safely remove the memory card from the Device.

— 34 —

Example of the YDNBLOG.TXT file content:

00:30.310 RX CAN1 FILTER 01, 0x09FD0205 1A1A018544FAFFFF
00:30.310 LG CAN1 FILTER 01, INT32 19400
00:30.310 TX CAN2 FILTER 01, 0x09FD0205 1A1A018544FAFFFF

RX and TX are the received and sent messages with an indication of an interface and the number
of the matched filter. LG is the record created by the log() function, with the type and value of an expression
or variable.

You can record every message received by the Device to a log file with the following filter:

match(ANY,0,0)
{
 send()
}

Do not forget to comment out all the log() function calls after you have finished debugging. Independent
of the DIAGNOSTICS setting in the program, the log() functions will be compiled into the bytecode
and will consume computing resources.

The Bridge supports binary log files also. You may turn on use of binary logs in the program text (this setting
is also not saved to the Device’s volatile memory):

LOG_FORMAT=BINARY

The TEXT value forces text log format, which is used by default. Binary logs are stored in files
with a .CAN extension. Unlike text logs, which contain only messages matched with filters (or sent
from filters), binary logs contains all messages received or transmitted on both CAN interfaces. And unlike
text logs, you can't use the log() function to save a variable's value to the binary log file.

Binary logs may be opened, viewed, converted or exported to other formats with the free CAN Log Viewer,
which works on Microsoft Windows, Linux and Max OS X. You may download it from our web site.
The .CAN format is open and described in the CAN Log Viewer documentation.

— 35 —

XI. Firmware Updates

In the root folder of the MicroSD card with FAT or FAT32 file system, copy BUPDATE.BIN, which
contains the firmware update of the Device. Insert the card into the Device and turn on the power in
the NMEA 2000 network.

From 5-15 seconds after powering on, the LED will flash 5 times with green light. This indicates that
the firmware update is successfully completed.

Figure 4. Raymarine c125 MFD devices list with Bridge (YDNB-07)

— 36 —

If the Device already is using the given version of the firmware, or if the Device cannot open the file or
the file is corrupted, the boot loader immediately transfers control to the main program. This is done without
visual cues.

The Device information including the firmware version is displayed in the list of NMEA 2000 devices
(SeaTalk NG, SimNet, Furuno CAN) or in the common list of external devices on the chart plotter
(see third line at Figure 4). Usually, access to this list is in the "Diagnostics", "External Interfaces" or
"External Devices" menu of the chart plotter.

— 37 —

Index

addr(), function ...26,27
ANY, identifier ...20,34
buffer, see "message buffer".............................21,24,26
BUPDATE.BIN, file ...35
CAN, file format .. 34
CAN1, identifier ..15,20,22
CAN1_HARDWARE_FILTER_x, setting18,30
CAN2, identifier ..15,20,22
CAN2_HARDWARE_FILTER_x, setting18
cast(), function ..23
custom hardware filter18,29
DATA, constant ...20,24
DEVICE_INSTANCE, setting19
DIAGNOSTICS, debug setting 33
else, operator ...24,25
filter, see "software filter"15,20
FLOAT, type ..20,23
FW_CAN1_TO_CAN2, setting15,17,30
FW_CAN2_TO_CAN1, setting15,17,30
get(), function ..24
hardware filter ..18,29
heartbeat() ..28
if(), operator ...24, 30
init() ...28

INT8..INT32, type22,23
load(), function ...26
log(), function33,34
LOG_FORMAT, debug setting 34
match(), filter15,20
message buffer21,24,26
operators ...23,24
PGNS_TO_ASSEMBLY, setting ... 17,22,32
save(), function ..26
send(), function15,22
set(), function ..24
software filter15,20
system hardware filter18,30
SLOTx, setting ..19
SYSTEM_INSTANCE, setting19
timediff(), function25
timer(), function25
type of variable22,23
UINT8..UINT32, type22,23
variables ..22,23
YDNB.CFG, file14,33
YDNBERR.TXT, file14
YDNBLOG.TXT, file 33,34
YDNBSAVE.CFG, file 14,19

— 38 —

Appendix A. Troubleshooting

Situation Possible cause and correction
The LED does not signal
after the NMEA 2000
network is powered on

1. Make sure that you turned on the NMEA 2000 network to which
the CAN1 interface of the Device is connected. The microcontroller
of the Device is powered by the network the CAN1 interface is connected to.

2. No power supply on the bus. Check if the bus power is supplied
(NMEA 2000 network requires a separate power connection and cannot be
powered by a plotter or another device connected to the network).

3. Loose connection in the power supply circuit. Treat the Device
connector with a spray for cleaning electrical contacts. Plug the Device into
another connector.

The state of CAN1
or CAN2 network
always is “red”

1. No power supply on the bus. Check if the bus power is supplied
(NMEA 2000 network requires a separate power connection and cannot be
powered by a plotter or another device connected to the network).

2. Loose connection in the data circuit. Treat the Device connector with
a spray for cleaning electrical contacts. Plug the Device into another connector.

3. There are problems in the NMEA 2000 network. Make sure that both
terminators are installed in each network (see Section II). Plug another device
into the selected connector and make sure it functions.

4. Most messages are discarded by hardware filters. Turn any device
in the network off and on again (see III.1).

A loaded program is
not working properly.

Debug the program. See section X.

— 39 —

Table continued

Situation Possible cause and correction

The Device LED flashes
“green” every five
seconds, but the Device
is not displayed in the
list of external devices
on the plotter.

There are problems in the NMEA 2000 network. The network segment
is not connected to the plotter or there are missing terminators in the network
or the network is too long. Plug another device into the selected connector and
make sure it appears in the list of devices on the plotter.

— 40 —

Appendix B. List of NMEA 2000 Messages of the Device

Messages from the table below are received independently from any settings, hardware filters
(see VII.3) or the program. All received messages, including the messages that are addressed to the Device,
are transmitted to the program and may be forwarded to another CAN interface by it. The Device processes
messages that are addressed to it after they have been processed by the program (but independently
of the program’s results). The Device’s answers to such messages are not passed to the program,
but are sent directly to both CAN interfaces.

Table 1. Supported NMEA 2000 messages

PGN Transmit Receive Description

59392 Yes Yes ISO Acknowledgment

59904 — Yes ISO Request

60928 Yes Yes ISO Address Claim

126464 Yes — PGNs Group List

126996 Yes — Product Information

— 41 —

Appendix C. Device Connectors

Figure 1. NMEA 2000 connectors of the YDNB-07R (left) and YDNB-07N (right) models

	Introduction

	Warranty and Technical Support

	I. Product Specification
	II. Installation and Connection to NMEA 2000 Networks
	III. LED Signals

	IV. MicroSD Slot and Card’s Compatibility
	V. Loading of Programs into the Device

	VI. Structure and Basic Syntax of the Program
	VII. Description of the Settings

	VIII. Software Filters
	IX. Optimization and Performance
	X. Debugging of the Program
	XI. Firmware Updates
	Index

	Appendix A. Troubleshooting
	Appendix B. List of NMEA 2000 Messages of the Device
	Appendix C. Device Connectors

